Search results

Search for "diazonium salts" in Full Text gives 50 result(s) in Beilstein Journal of Organic Chemistry.

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • diazonium salts produces highly reactive aryl radicals (Scheme 18) [153]. The chemical conversion can be initiated by electrochemical reduction [154], a reducing agent [155][156][157], a base [158], heating [159], or photochemically [160]. Aryl radicals may act as a halogen abstractor for alkyl halides and
  • derivatives. Chemical reaction process scheme of DCP-induced crosslinking of LDPE. Scheme 16 redrawn from [126]. A probable mechanism of radical-induced hydrosilylation. Polymer surface modification by homolytic dediazonation of diazonium salts. Photoinduced polymer surface modification or surface grafting
PDF
Album
Review
Published 18 Oct 2023

Facile access to 3-sulfonylquinolines via Knoevenagel condensation/aza-Wittig reaction cascade involving ortho-azidobenzaldehydes and β-ketosulfonamides and sulfones

  • Ksenia Malkova,
  • Andrey Bubyrev,
  • Stanislav Kalinin and
  • Dmitry Dar’in

Beilstein J. Org. Chem. 2023, 19, 800–807, doi:10.3762/bjoc.19.60

Graphical Abstract
  • modification of various substrates, such as 3-bromoquinolines [52][53][54][55], quinoline-3-boronic acids [56], and diazonium salts [57]. When considering general methods for the quinoline core formation, aromatic ortho-substituted carbonyl compounds attract attention as decent and easily available reagents
PDF
Album
Supp Info
Full Research Paper
Published 09 Jun 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
PDF
Album
Review
Published 24 Apr 2023

A visible-light-induced, metal-free bis-arylation of 2,5-dichlorobenzoquinone

  • Pieterjan Winant and
  • Wim Dehaen

Beilstein J. Org. Chem. 2021, 17, 2315–2320, doi:10.3762/bjoc.17.149

Graphical Abstract
  • salts are generated in situ and converted to radicals through irradiation with visible light. Reaction products precipitate from the solvent, eliminating the need for purification and thus providing a novel green method for the synthesis of versatile bis-electrophiles. Keywords: benzoquinone; diazonium
  • salts; Green Chemistry; Meerwein arylation; photoredox; Introduction Quinones or quinoid-based structures are ubiquitous in nature [1][2][3]. These versatile structures have shown promising antimalarial [4][5], antibacterial [6], and chemotherapeutic [6][7][8] properties. Their inherent oxidative
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2021

Heterogeneous photocatalytic cyanomethylarylation of alkenes with acetonitrile: synthesis of diverse nitrogenous heterocyclic compounds

  • Guanglong Pan,
  • Qian Yang,
  • Wentao Wang,
  • Yurong Tang and
  • Yunfei Cai

Beilstein J. Org. Chem. 2021, 17, 1171–1180, doi:10.3762/bjoc.17.89

Graphical Abstract
  • independently disclosed a photocatalytic cyanomethylarylation of N-aryl/benzoyl acrylamide for the synthesis of oxindoles and isoquinolinediones using diazonium salts and PIFA/1,3,5-trimethoxybenzene as radical initiators, respectively [29][30][31]. In this case, expensive Ru and 4CzIPN-based homogeneous
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2021

CF3-substituted carbocations: underexploited intermediates with great potential in modern synthetic chemistry

  • Anthony J. Fernandes,
  • Armen Panossian,
  • Bastien Michelet,
  • Agnès Martin-Mingot,
  • Frédéric R. Leroux and
  • Sébastien Thibaudeau

Beilstein J. Org. Chem. 2021, 17, 343–378, doi:10.3762/bjoc.17.32

Graphical Abstract
  • formation of CF3-containing alkylcarbenium ions from diazonium salts: In 1967, Mohrig et al. successfully observed the first aliphatic diazonium ion 218a by protonation of the corresponding diazo precursor [142] 217a in a superacid by in situ NMR spectroscopy (Scheme 54) [143]. The remarkable characteristic
PDF
Album
Review
Published 03 Feb 2021

Metal-free synthesis of biarenes via photoextrusion in di(tri)aryl phosphates

  • Hisham Qrareya,
  • Lorenzo Meazza,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 3008–3014, doi:10.3762/bjoc.16.250

Graphical Abstract
  • intermediates (triplet aryl cations [28][29] or aryl radicals [30][31]). As for the former case, the intermolecular formation of a biaryl arose from the photoheterolysis of an Ar–N bond (in arene diazonium salts or their derivatives [32][33]), of an Ar–Cl bond [34][35], of an Ar–O bond (in aryl phosphates [36
  • ], aryl sulfonates [36], and in aryl trifluoroethyl sulfate [37], Scheme 1a) followed by the reaction of the thus formed aryl cation with an aromatic substrate. In an alternative approach, aryl radicals may be generated under photoredox catalysis conditions (mostly from arene diazonium salts or aryl
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2020

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
  • transformation concerned the direct arylation of various aromatic compounds bearing different DGs with aryldiazonium salts (Figure 20). In her initial study in 2005, Sanford reported a similar arylation and diazonium salts were already identified as appropriate coupling partners. However, harsh reaction
  • was necessary to generate the aryl radicals (Figure 22). Similar results were obtained with this new procedure. This modified protocol was also compatible with a diversity of DGs and diazonium salts, thus furnishing a panel of 20 biaryls in good yields. Inspired by this work, several research groups
  • -aminoquinoline delivered the arylated products in increased yields. Carbocyclic rings, long alkyl chains, methoxy, chloride, and phenyl groups were tolerated on the C–H substrates and electron-poor as well as electron-rich diazonium salts could be coupled smoothly. Pd-catalyzed acylation The dual catalytic
PDF
Album
Review
Published 21 Jul 2020

Heterogeneous photocatalysis in flow chemical reactors

  • Christopher G. Thomson,
  • Ai-Lan Lee and
  • Filipe Vilela

Beilstein J. Org. Chem. 2020, 16, 1495–1549, doi:10.3762/bjoc.16.125

Graphical Abstract
PDF
Album
Review
Published 26 Jun 2020

Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review

  • Alessandra Del Tito,
  • Havall Othman Abdulla,
  • Davide Ravelli,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 1476–1488, doi:10.3762/bjoc.16.123

Graphical Abstract
  • approach was based on the one-electron reduction of diazonium salts (see the case of 13.3+ in Scheme 13), formed in situ by the reaction of the chosen 2-heteroaryl aniline (e.g., 13.1) with tert-butyl nitrite (1.5 equiv). Formation of the aryl radical 13.4· and following addition onto an alkyne moiety (e.g
PDF
Album
Review
Published 25 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • . The precursors of choice encompass aryl diazonium salts, haloarenes, and sulfur(IV) or sulfur(VI) compounds (Scheme 10). Aryl radicals from aryl diazonium salts. Aryl diazonium salts are attractive substrates for accessing aryl radicals. Despite their intrinsic thermal instability and exothermic
  • sole byproduct. As first reported by König and co-workers, organic dyes can be successfully employed as photocatalysts for accessing aryl radicals from these substrates [73]. In this work (Scheme 11), eosin Y (OD13) was used for the organophotocatalytic reduction of the aryl diazonium salts 11.1 under
  • porphyrin [75] and rhodamine 6G (OD14) [76]. Aryl radicals from aryl halides. Aryl halides are generally more difficult to reduce than aryl diazonium salts (Ered < −1.2 V) [77][78]. However, they are more available and bench-stable. Their reduction potential is dependent on the substitution pattern and on
PDF
Album
Review
Published 29 May 2020

Copper-based fluorinated reagents for the synthesis of CF2R-containing molecules (R ≠ F)

  • Louise Ruyet and
  • Tatiana Besset

Beilstein J. Org. Chem. 2020, 16, 1051–1065, doi:10.3762/bjoc.16.92

Graphical Abstract
  • Sandmeyer-type reaction (Scheme 7, reaction a) [49]. The reaction was efficient, although heteroaryl diazonium salts were reluctant in this reaction. To overcome these limitations, hypervalent iodinated species were used as substrates. The copper-mediated reaction with λ3-iodanes demonstrated a large
PDF
Album
Review
Published 18 May 2020

Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches

  • Rodrigo Costa e Silva,
  • Luely Oliveira da Silva,
  • Aloisio de Andrade Bartolomeu,
  • Timothy John Brocksom and
  • Kleber Thiago de Oliveira

Beilstein J. Org. Chem. 2020, 16, 917–955, doi:10.3762/bjoc.16.83

Graphical Abstract
  • the diazonium salts, as well as the enol acetates are reported giving versatile α-aryl ketones/aldehydes in both batch and continuous-flow conditions (20 examples in 26–88% yields) [9]. A comparison between batch and flow conditions was performed showing that similar yields are obtained (batch 82% vs
PDF
Album
Review
Published 06 May 2020

A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in “click” reactions

  • Pezhman Shiri and
  • Jasem Aboonajmi

Beilstein J. Org. Chem. 2020, 16, 551–586, doi:10.3762/bjoc.16.52

Graphical Abstract
  • organic frameworks (CNOF, 90) for the preparation of 1,2,3-triazole derivatives substituted at the 1- and 4-positions under green reaction conditions [82]. The CNOF (90) worked well as catalyst for the Huisgen cycloaddition of benzyl azides and aromatic azides (generated from benzyl halides and diazonium
  • salts, respectively) with aromatic and aliphatic alkynes (Scheme 20). In the first step, 4,4'-biphenylbisdiazonium tetrafluoroborate (BPBDT, 89) and CuCl2⋅2H2O were added to a water/toluene solvent system. Then, a methanolic solution of NaBH4 was added, and this was stirred for 6 h. The toluene layer
PDF
Album
Review
Published 01 Apr 2020

Visible-light-induced addition of carboxymethanide to styrene from monochloroacetic acid

  • Kaj M. van Vliet,
  • Nicole S. van Leeuwen,
  • Albert M. Brouwer and
  • Bas de Bruin

Beilstein J. Org. Chem. 2020, 16, 398–408, doi:10.3762/bjoc.16.38

Graphical Abstract
  • nitriles [21], carbonyl or imine species [22], iodonium or diazonium salts [23], or halide species [24]. The formation of radicals from halide species by photoredox catalysis has been widely studied. It has been applied as a mild method for the dehalogenation of several compounds [25][26][27]. In the light
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2020

Copper-promoted/copper-catalyzed trifluoromethylselenolation reactions

  • Clément Ghiazza and
  • Anis Tlili

Beilstein J. Org. Chem. 2020, 16, 305–316, doi:10.3762/bjoc.16.30

Graphical Abstract
  • . Trifluoromethylselenolation of diazoacetates and diazonium salts with Me4NSeCF3 by the group of Goossen. Trifluoromethylselenolation with ClSeCF3 by the group of Tlili and Billard. Trifluoromethylselenolation with TsSeCF3 by the group of Tlili and Billard. Copper-catalyzed synthesis of a selenylated analog 30 of Pretomanid
PDF
Album
Review
Published 03 Mar 2020

Synthesis of aryl-substituted thieno[3,2-b]thiophene derivatives and their use for N,S-heterotetracene construction

  • Nadezhda S. Demina,
  • Nikita A. Kazin,
  • Nikolay A. Rasputin,
  • Roman A. Irgashev and
  • Gennady L. Rusinov

Beilstein J. Org. Chem. 2019, 15, 2678–2683, doi:10.3762/bjoc.15.261

Graphical Abstract
  • presence of p-toluenesulfonic acid (4.0 equiv) followed by the addition of the formed solution of diazonium salts to a warm suspension of CuCl (5.0 equiv) in acetonitrile. Thus, compounds 2a–k were obtained in 43–83% yield (Scheme 1, see Supporting Information File 1 for more experimental details). It
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2019

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • fluorination methods to these building blocks, such as Friedel–Crafts-type electrophilic halogenation [10][11], Sandmeyer-type reactions of diazonium salts [12], and halogenations of preformed organometallic reagents [13], commonly involve multiple steps, harsh reaction conditions, and the use of
PDF
Album
Review
Published 23 Sep 2019

Synthesis of aryl sulfides via radical–radical cross coupling of electron-rich arenes using visible light photoredox catalysis

  • Amrita Das,
  • Mitasree Maity,
  • Simon Malcherek,
  • Burkhard König and
  • Julia Rehbein

Beilstein J. Org. Chem. 2018, 14, 2520–2528, doi:10.3762/bjoc.14.228

Graphical Abstract
  • triflates [8], and diazonium salts [9]. Typical metals used are palladium [10][11][12][13], copper [14][15][16][17][18][19][20][21], nickel [22][23][24], iron [25][26][27][28][29], cobalt [30][31][32], and rhodium [33][34]. Aryl sulfides are also synthesized by cross coupling of thiols and aryl Grignard
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2018
Graphical Abstract
  • -methoxybenzoate (3c, not shown) afforded the azo compounds 7a and 7c in 92% and 91% yields, respectively. By comparison the yield of the azo product using allyl p-methoxybenzoate (3b, now shown) as substrate was somewhat lower (77%). Diazonium salts bearing substituents with different steric and electronic
PDF
Album
Supp Info
Full Research Paper
Published 28 Aug 2018

Applications of organocatalysed visible-light photoredox reactions for medicinal chemistry

  • Michael K. Bogdos,
  • Emmanuel Pinard and
  • John A. Murphy

Beilstein J. Org. Chem. 2018, 14, 2035–2064, doi:10.3762/bjoc.14.179

Graphical Abstract
  • publication by Kundu and Ranu provides a way of arylating the C2 position of electron-rich five-membered heterocycles, using anilines as the coupling partner. tert-Butyl nitrite (t-BuONO) is used as a diazotizing agent to generate diazonium salts transiently in situ. The reaction is catalysed by Eosin Y under
  • , benzothiophenes and benzimidazoles seen in many drugs. In another demonstration of the value of diazonium salts, the König group have published a protocol for the synthesis of substituted benzothiophenes using Eosin Y photocatalysis, starting from o-methylthioarenediazonium salts and substituted alkynes (Scheme
PDF
Album
Review
Published 03 Aug 2018

Functionalization of graphene: does the organic chemistry matter?

  • Artur Kasprzak,
  • Agnieszka Zuchowska and
  • Magdalena Poplawska

Beilstein J. Org. Chem. 2018, 14, 2018–2026, doi:10.3762/bjoc.14.177

Graphical Abstract
  • Artur Kasprzak Agnieszka Zuchowska Magdalena Poplawska Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland 10.3762/bjoc.14.177 Abstract Reactions applying amidation- or esterification-type processes and diazonium salts chemistry constitute the most
  • commonly applied synthetic approaches for the modification of graphene-family materials. This work presents a critical assessment of the amidation and esterification methodologies reported in the recent literature, as well as a discussion of the reactions that apply diazonium salts. Common
  • common misunderstandings and inaccuracies. This work deals with common issues in the field of GO and RGO functionalization; it discusses the carboxyl-based approach and includes remarks regarding reactions that utilize diazonium salts. Direct links are provided to basic principles of organic synthesis
PDF
Album
Review
Published 02 Aug 2018

5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines

  • Ranjana Aggarwal and
  • Suresh Kumar

Beilstein J. Org. Chem. 2018, 14, 203–242, doi:10.3762/bjoc.14.15

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2018

Progress in copper-catalyzed trifluoromethylation

  • Guan-bao Li,
  • Chao Zhang,
  • Chun Song and
  • Yu-dao Ma

Beilstein J. Org. Chem. 2018, 14, 155–181, doi:10.3762/bjoc.14.11

Graphical Abstract
  • proceeded via radical intermediates (Scheme 25), which is analogous to Sandmeyer halogenations of diazonium salts. First, the trifluoromethyl copper(I) species is generated from TMSCF3 and copper salt. Then, Cu(I)CF3 transfers one electron to the diazonium salt affording Cu(II)CF3 and a diazo radical
PDF
Album
Review
Published 17 Jan 2018

Photocatalytic formation of carbon–sulfur bonds

  • Alexander Wimmer and
  • Burkhard König

Beilstein J. Org. Chem. 2018, 14, 54–83, doi:10.3762/bjoc.14.4

Graphical Abstract
  • different strategy for the photoredox-catalyzed preparation of diaryl sulfides was reported in 2013, applying [Ru(bpy)3]Cl2 as photocatalyst (Scheme 16) [47]. The authors propose a mechanism where in situ generated aryl diazonium salts are cleaved by reduction of the excited state of the photocatalyst to
  • benzoxazoles. Starting from aryl thiols and aryl diazonium salts, Lee and co-workers developed a visible-light photocatalyzed procedure for the preparation of diaryl sulfides (Scheme 17) [48]. Applying Eosin Y as organic photocatalyst, both electron-rich and electron-deficient thiols reacted well with various
  • aryl diazonium salts to give the corresponding diaryl sulfide in high yields. Very recently, Noël and co-workers applied the above-mentioned concepts for the selective arylation of cysteine and cysteine-containing peptides in batch as well as in a photomicroreactor (Scheme 18) [49]. They were able to
PDF
Album
Review
Published 05 Jan 2018
Other Beilstein-Institut Open Science Activities